
The MSX
Memory (I)

Summary

This article aims at describing how the MSX memory works, showing how the ROMs
and RAMs share only 64 KB memory space. This is the first of three articles, which
addresses the primary slots. The second article will analyze the secondary slots, Memory
Mapper and Megaram. The last article proposes some memory experiments on MSX.

1- Introduction

We all know that MSX can only address 64 KB of memory. But if the MSX ROM
BIOS has 32 KB and the RAM 64 KB, isn't it addressing more than 64 KB? In addition, if
we insert a game or application cartridge with 16 or 32 KB, doesn't the memory amount
still raising?

The answer is yes. So, in this case, is the Z-80 processor able to access more than 64
Kb? Yes, it is possible, but not directly. In fact, Z-80 is able only to address 64 KB due to
the memory addressing schema of 16 bits. According to that, it is only possible to represent
numbers between 0 and 65535, or, 64 KB.

In order to access more than 64 KB, we must have up to four memory banks attached
on the system, limited to 64 KB each. So, if we want to access a given memory bank, we
have to switch the active memory to the desired one. For example, the Z-80 stops accessing
the ROM and starts to read/write on the RAM. Nevertheless, the memory changing is not
applied to the whole memory, but only to a part of it.

MSX engineers didived the whole memory into 4 parts, called pages, having all the
same size. Now, each page can access a different memory bank, resulting on a more
flexibile memory switching system. Figure 1 shows the MSX page system.

16 Kb Page 0
0000

3FFF

16 Kb Page 1
4000

7FFF

16 Kb Page 2
8000

BFFF

16 Kb Page 3
C000

FFFF

Figure 1. MSX memory division into pages.

The pages are numbered from 0 to 3, each one having 16 KB. The initial and final
addresses of each page is described on figure 1.

As told before, it is possible to to share up to four memory banks limited to 64 each
(although it is possible to share more memories using the subslots system, described on the
second article). Each memory bank is called slot.

The Brazilian Gradiente Expert MSX slot and page configuration is shown on the figure
2. The shadowed areas indicates the pages used by each memory. This configuration varies
from other MSX systems, but always having BIOS on slot 0.

Slot 0
ROM - BIOS

Slot 1
Cartridge A

Slot 2
RAM

Slot 3
Cartridge B

16 Kb Page 0 Page 0 Page 0 Page 0 0000 - 3FFF

16 Kb Page 1 Page 1 Page 1 Page 1 4000 - 7FFF

16 Kb Page 2 Page 2 Page 2 Page 2 8000 - BFFF

16 Kb Page 3 Page 3 Page 3 Page 3 C000 - FFFF

Figure 2. MSX memory division into slots and pages.

A memory bank neither have to use all 64 KB nor start on the page 0. An application or
game cartridge, for example, starts on the page 1 and have 16 or 32 KB.

2- Memory switching

Once we are able to select the active memory on each page, we may have, for example,
the pages 0 and 1 acessing the ROM on slot 0 and the page 2 and 3 acessing the RAM on
slot 3. The PPI is the responsible for memory switching, telling the Z-80 what it will see on
each page. The port &HA8 port configures each page, as seen on figure 3.

Bit 7 6 5 4 3 2 1 0

Page 3 2 1 0

Figure 3. Port &HA8 data configuration.

Each page is represented by a 2-bit value, which contains the number of the active slot.
The next example will show how to configure the port A8.

When the Brazilian Expert MSX starts, the memory is configured as shown on the
figure 4. The pages 0 and 1 are accessing the ROM on slot 0, and the pages 3 and 4 are
accessing the RAM on slot 2. The shadowed areas detaches the current memory accessed
by the Z-80 processor.

Slot 0
ROM - BIOS

Slot 1
Cartridge A

Slot 2
RAM

Slot 3
Cartridge B

16 Kb Page 0 Page 0 Page 0 Page 0 0000 - 3FFF

16 Kb Page 1 Page 1 Page 1 Page 1 4000 - 7FFF

16 Kb Page 2 Page 2 Page 2 Page 2 8000 - BFFF

16 Kb Page 3 Page 3 Page 3 Page 3 C000 - FFFF

Figure 4. Brazilian Expert MSX initial configuration.

According to the presented configuration, we have:

Bit 7 6 5 4 3 2 1 0

Binary
value

1 0 1 0 0 0 0 0

Slot 2 2 0 0

Page 3 2 1 0

So, the value sent to the port &HA8 is 160 (&B10100000).
If we read the value on port &HA8, we get the current slots configuration. If we write,

we will change the slots configuration.

3- Some care when changing slots

By the time we change the active slot on a memory page, all the region related to this
page starts to access another memory bank. Although the previous memory content is not
really lost, it turns unaccessible after the memory switching. According to that, we cannot
change the page where the current program is executing or we will loose the program's
control.

For illustrating that, suppose two programs in Basic located on the same page, but in
different slots. Suppose also that the stack pointer (SP) points to a Basic line instead of
pointing to a memory address.

Program on slot 2 Program on slot 1

8000 PRINT”I will change the slot”
8010 OUT &HA8, &B10010000
8020 END

8000 INPUT”What is your name”;N$
8010 INPUT”How old are you”;A
8020 PRINT”Name: ”;N$
8030 PRINT”Age: ”;A
8040 END

Both programs are located on the same memory region. After start running the program
on slot 2, the following executing flow would be resulted, marked as blue.

Program on slot 2 Program on slot 1

8000 PRINT”I will change the slot”
8010 OUT &HA8, &B10010000
8020 END

8000 INPUT”What is your name”;N$
8010 INPUT”How old are you”;A
8020 PRINT”Name: ”;N$
8030 PRINT”Age: ”;A
8040 END

The program located on the slot 1 gained the control, while the program located on the
slot 2 lost the control.

If we fall on the situation above, the solution is to jump the program's execution to a
page different from that one we want to change the slot, and then change the slot. In this
case, the control is not lost. That strategy was successfully applied on Slot View [1].

Program on slot 2 Program on slot 1

8000 PRINT”I will change the slot”
8010 GOTO C000
8020 END

8000 INPUT”What is your name”;N$
8010 INPUT”How old are you”;A
8020 PRINT”Name: ”;N$
8030 PRINT”Age: ”;A
8040 END

C000 OUT &HA8, &B10010000
C010 END

4- Iter-slot calls

The BIOS is the native MSX operating system, which contains a lot of ready-made
instructions designed to basic hardware management and MSX peripherals communications
such as writing on screen, generate sounds, control joystick etc. The BIOS prevents the
developer from coding complexes programs, once most of necessary code is ready to be
used. The BIOS is located at page 0, slot 0.

The Basic interpreter is located on the pages 0 and 1, slot 0, and it used together with
the BIOS when the Basic mode is active. The Basic interpreter is not necessary for an
Assembly program, except when some specific calls to the Basic interpreter is performed
by this program. So, the page 1 is free for programs written in Assembly. The page 0 can
also be used by an Assembly program, but it may experience some problems if some BIOS
calls are made.

The MSX BIOS has routines designed to perform secure and efficient calls to programs
located on another slot. These are the inter-slots calls.

The most common inter-slot calls are [2]:
• The BIOS is called from MSX-DOS.
• The BIOS is called from SUB-ROM in Basic (MSX 2)
• The BIOS is called from a cartridge.

MSX-DOS sets all four pages to use the RAM. In that case, BIOS access is not
possible. In order to access the BIOS, we must change the page 0 to the slot containing the
BIOS and then perform the subroutine call. When finished, we must return to the original
slots configutration.

This operation is quite easy when the current execution line is loacted on a page
different from 0. Nevertheless, we may experience some problems when our program is
located on the page 0, the same page used by the BIOS. As seen before, the correct BIOS
access in this situation demands a lot of care. The inter-slot calls solve this problem for us,
while it jumps the execution to the page 3 to the temporary slot changing. Some of inter-
slot calls are included on the MSX-DOS [2].

Some inter-slot call examples are [4]: RDSLT (&H000C), WRSLT (&H0014),
CALSLT (&H001C) and ENASLT (&H0024).

5- How does a ROM type cartridge work

MSX computers have, at least, one external slot and the hadware attached there is called
cartridge. The cartridge types are [2]:

• ROM – used by game and applications.
• I/O – as disk-drives or RS-232 interface.
• RAM – RAM memory expansion.
• Expansion – devices used to expand the number of cartridges.

Generally the games developed in Assembly starts at the memory address &H4000
(page 1). When the cartridge contains a program in Basic, it starts at the address &H8000
(page 2).

The ROM file is composed by a header and the software content:

Header Software content

The header has 16 bytes and describes a ROM format cartridge. So, when the system
starts, the Basic interpreter analyzes the cartridge's header and then jumps to the program
located inside the ROM, based on these informations. The header is discribed on the figure
5.

2 bytes ID + 0000

2 bytes INIT + 0002

2 bytes STATEMENT + 0004

2 bytes DEVICE + 0006

2 bytes TEXT + 0008

6 bytes Reserved + 000A

Figure 5. cartridge ROM Header.

Header description [2]:
• ID – in case of ROM type, the identification is “AB” (&H41, &H42). For the SUB-

ROM type cartridges, the identification is “CD”.
• INIT – contains the initial address of the routine to be executed, when the cartridge

is auto-started. Otherwise, this value is 0.
• STATEMENT – when the cartridge has a CALL function to start a routine from the

Basic, these two bytes are the address for such routine. Otherwise, this value is 0.
• DEVICE – initial address for the device expansion routine. Otherwise, the value is

0.
• TEXT – pointer to the program in Basic when he cartridge is auto-started.

Otherwise, the value is 0.

6- Loading ROMs from Basic

In the previous section, we saw that ROM type cartridges programs in Assembly are
located on page 1. The question now is how to load these binary programs from the Basic,
once this program must run on the page 1? We must take in account that Basic sets the
pages 0 and 1 as ROM.

The solution is to copy the ROM block to the page 1 and then start the program, but
first of all we have to change the page 1 to RAM. Once this is not achieved easily in Basic,
we must write a program in Assembly to change the page 2 to Assembly, copy the ROM to
that place and then start the program.

We may add such program at the bottom of the ROM block and set the starting
execution address to those indicated by the ROM's header. Figures 6 and 7 ilustrates this
proccess. On figure 6, the ROM block (yellow) plus the program (green) are loaded on the
page 2, and the program responsible for all those tasks (green) starts to execute.

Page 0
Slot 0

0000

3FFF

Page 1
Slot 0

4000

7FFF

Page 2
Slot 2

8000

BFFF

Page 3
Slot 2

C000

FFFF

Figure 6. Loading ROM on page 1.

On figure 7, the ROM block is copied to the page 1 (RAM) and then initialized.

Page 0
Slot 0

0000

3FFF

Page 1
Slot 2

4000

7FFF

Page 2
Slot 2

8000

BFFF

Page 3
Slot 2

C000

FFFF

Figure 7. Process finished.

7- Credits

This article was originally written in Portuguese and translated into English by Marcelo
Silveira, Systems and Computer Engineer, graduated at Universidade do Estado do Rio de
Janeiro, Brazil.

Original written on: May, 2004.
Revised on: July, 2017.
E-mail: flamar98@hotmail.com
Homepage: http://marmsx.msxall.com

References:

[1] – Slot View, MarMSX Development, em http://marmsx.mxsall.com
[2] – MSX 2 Technical Handbook, ASCII Corporation, 1987.
[3] – O Livro Vermelho do MSX, editora Mc Graw Hill.
[4] – MSX Top Secret 2, Edison Pires Moraes, 2004.

