MSX Article
L MSX

RGB to Gray

Summary

This article demonstrates how to convert a color image to grayscale using MSX 2.

1- Introduction

A digital image is composed by a combination of 3 primary additive colors: red, green
and blue. This color system is called RGB. Do not confuse this system with the subtractive
color system, which is the one used on drawings and printings. The first one is based on
light emission, while the second is based on light reflection. Figure 1 shows both systems.

a) Additive color system b) Subtractive color system

Figure 1. Color systems

Each color on additive system is composed by a mix of primary colors, each one
composed by a discrete shade from the dark to bright. The number of shades or levels
depends on the video processor hardware. The PCs have 256 levels on each color channel,
reaching 16 million colors. The MSX 2 has 8 levels on each color channel that together
represents up to 512 different colors.

In a grayscale image, each pixel have the same intensity on all color channels. In that
case, we may represent a pixel using only one component — the grayscale.

We may achieve the grayscale color by calculating the arithmetic mean of red, green
and blue colors and applying the result on all channels:

GRAY = (RED + GREEN + BLUE) / 3

Thus, there is a formula used in image processing that is based on the human eye
response for each color component. This is a weighted mean.

GRAY = RED*0,3 + GREEN*(0,59 + BLUE*0,11

Is it perfectly possible to convert from a color image to grayscale, once the grayscale is
a subset of the color space. Nevertheless, the reverse way is complex, once we are trying to
reach the whole set starting from a subset.

2- Conversion to Grayscale on MSX

2.1- Screens 2-7

MSX screens from 2 to 7 have theirs colors controlled by a palette system. In other
words, each pixel holds an index to a table that contains the RGB color value. In that case,
each palette entry controls many pixels together.

In order to convert an image from RGB to gray, we have only to change the palette
color data. Quite simple, once we have to change only 16 values against 27 k or 54 k values
if pixel color were controlled directly.

MSX 2 has the Basic command “COLOR=" that allows us to change the palette data.
Nevertheless, there is no command that is capable of reading the palette data. In that case,
we must read that data directly from the VRAM.

The VRAM area that holds the palette data changes according to the screen. The table 1
describes the VRAM area for each screen mode.

Screen Initial address Final address
0/ width 40 &H0400 &HO041F
0/ width 80 &HOF00 &HOF1F

1 &H2020 &H203F
2 &H1B80 &H1B9F
3 &H2020 &H?203F
4 &H1B80 &H1BI9F
5 &H7680 &H769F
6 &H7680 &H769F
7 &HFAS80 &HFA9F

Table 1. Palette address in VRAM.

Each palette index is stored in the VRAM, using 2 bytes configured as follows:

E - OrrrObbb
E+1 - 00000gg9g

The “r” represents the red channel bits, “g” the green bits and “b” the blue bits.
Each palette entry address is calculated as follows:

E = initial_address + index x 2

The following Basic program converts any palette on screen 5 to grayscale. Draw
something or load an image to see the results.

10 SCREEN 5

20 FOR E=&H7680 TO &H769F STEP 2
30 R = FIX(VPEEK(E)/16)

40 G = VPEEK(E+1)

50 B = VPEEK(E) AND 7

60 C = FIX(R*0.3 + G*0.59 + B*0.11)
70 VPOKE E, C*16 + C

80 VPOKE E+1,C

90 NEXT E

100 COLOR=RESTORE

110 GOTO 110

For the other screens, change the VRAM area address (line 20).

2.2- Screen 8

Screen 8 represents each pixel using a RGB value directly. Once MSX 2 has 3 bits to
represent a intensity from each color channel (23 = 8 levels), it would be necessary 9 bits to
store a color. While a byte can only store 8 bits, the MSX designers decided to remove one
bit from the blue channel, once this color is the least perceived by the human visual system.

Each screen 8 pixel has the following configuration:

Bit 7161514132110
Color G|G|G|R|R|R|B|B

Two algorithms will be presented to convert a color image to grayscale in screen 8. The
first one is in Basic, while the second is in Assembly. The Basic program takes a few
minutes to complete the operation, while the Assembly program takes around 1 minute to
convert the image. The basic idea of both programs is to read each pixel by separating the
color components, converting the blue channel from 2 bits to 3 bits, calculating the average
color (gray) and finally setting the gray color to each channel. The arithmetic average is
used in order to simplify the calculations.

10 SCREEN 8

20 BLOAD"image.pic",S

30 FOR Y=0 TO 211

40 FOR X=0 TO 255

50 C=POINT(X,Y)

60 B=(C AND &B00000011)*2
70 R=(C AND &B00011100)/4
80 G=(C AND &B11100000)/32
90 C=INT((R+G+B)/3)

100 B=C/2

110 R=C*4

120 G=C*32

130 C=R+G+B

140 PSET(X,Y),C

150 NEXT X,Y

160 GOTO 160

The Assembly code equivalent to the previous program:

ORG &HC000

LD D, &HD4

1D E,0

LD HL,0

sl: LD IX,&H10D
CALL &H15F

PUSH DE

LD D,0

1D E,A

AND &B00000011
SLA A

1D D,A

1D A,E

AND &B00011100
SRL A

SRL A

ADD A,D

1D D,A

1D A,E

AND &B11100000
1D B,5

el: SRL A

DJNZ el

ADD A,D

LD D,FF

LD B,3

e2:SUB B

INC D

JR NC,e2

LD A,D

SLA
SLA
SLA
ADD
SLA
SLA
SRL
ADD A,D

LD IX,&H109
CALL &H15F
INC HL

POP DE

LD A,D

CP H

JR NZ,sl

1D A,E

CP L

JR NZ,sl
RET

SR i g
W)

MO N Ne NE NE Ne NE NE NE Ne NE NS NE NE NE WO NO NE NS NO Ne NE NO Ne NE NG WO Ne NE N Ne Ne NS WO Ne Ne N Ne Ne Ne Ne Ne Ne Ne No Ne Ne wo

End address of screen 8

Initial address of screen 8

RDVRM (read VRAM) Color stored in A
Call subrom

Save DE

Clear mean variable D

Save the color in E

Get the blue channel

Convert from 2 bits to 3 bits (because of R and G)
Store blue color in D

Get the full color

Get the red channel

Shift from 00ORRROO to

00000RRR

Add red and blue

Save the result in D

Take full color again

Get the green channel

Shift GGG00000 to 00000GGG

Add green to sum stored at D

Clear D (now used to store division)
Average by 3

A=A -8B

D=D+1

While not negative, loop e2

Do 00YYY000

Do 00YYYYYY

Do YYYYYYO0O

Convert gray value to 2 bits
Finallly do YYYYYYYY

WRTVRM (write)

Call subrom

Next pixel

Check DE

Check if reached the end of memory

Return

3- Credits

This article was written by Marcelo Teixeira Silveira, originally for the MSX Rio 2008
meeting fanzine.

Date: March 2008.

Revision: July 2017.

E-mail: flamar98@hotmail.com
Homepage: marmsx.mxsall.com

Note: this is a translation from the original article titled “RGB to Gray”, in portuguese,
written by the same author.

