
Screen 2
Wonders

Summary

In this article we discuss some wonders that can be done with the limited MSX screen
2, which has only ready-made 15 colors and a 1x8 pixel grouping that can only display 2
colors at time.

1- A little trick to increase the number of screen 2 colors

Different from MSX 2 screens 2-7, the MSX 1 screen 2 has only 15 fixed colors. But,
according to a little trick created by Daniel Vik [1], author of BlueMSX emulator and some
incredible demos like Utopia and MSX Unleashed, we can increase MSX colors up to 120
colors (not 105 – see next section). How is it possible?

If we alternate two pixels with different colors very quickly on screen, we get an
illusion as if their color were mixed. For example, if we alternate the color green (MSX
color code 3) with cyan (MSX color code 7), we will see a new green color with the
average colors of these two pixels. See figure 2.1.

Figure 2.1. - Color combination.

1.1. How many colors we can generate by mixing the 15 MSX 1 native colors?

According to the Mathematics concept of combination, we have:

C(n , p)=
n!

(n−p)! p !

C(15,2)=
15!

(15−2)! 2!
=

15×14×13!
13 !2 !

=
15×14

2
=15×7=105

Here, we are talking about different colors combination. Nevertheless, we can also
combine the same MSX native color, which results on itself. According to that, we have
105 + 15 = 120 colors.

Figure 2.2 shows all possible 120 colors generated by mixing MSX 1 native colors. The
most outside diagonal presents the MSX 1 native colors.

Figure 2.2. - The 120 achieved on screen 2.

1.2. How to generate images for the screen 2 with 120 colors format?

As we previously seen, these new colors are generated by mixing two MSX 1 colors.
According to that, we must have two images that will mix up their colors in order to
generate the final image with up to 120 colors. In addiction, this trick allow us to get
another advantage: 4 colors per 1x8 pixels group. Let's see how.

As we already know, is it possible to display only two pixels per 1x8 block in screen 2
– front color and background colors. Once we have two images that share the same space
and their colors can be mixed, we will have four different colors combinations for each
block as follows:

• Image 1 front color with image 2 front color
• Image 1 front color with image 2 background color
• Image 1 background color with image 2 front color
• Image 1 background color with image 2 background color

Figure 2.3. Color mixing.

By mixing only two MSX native colors, we will face a little problem: we can only
generate three instead of four colors. For example, if we try to mix up the colors 1 and 2 in
both images for a given 1x8 block, we will generate the colors 1-1, 2-2, 1-2 and 2-1. But
colors 1-2 and 2-1 are the same colors.

The cost function [1] (seen on the next chapter) is responsible for quantize image and
also finding out the best 4 colors combination for each 1x8 pixels group. This approach
give better results than if we quantize image first and then found out the best 4 colors. In
addition, it makes the task of finding out the best colors for each 1x8 block quite simple.

Figure 2.4 presents an example of image fusion by alternating two MSX 1 native colors
images.

(a) (b) (c)

Figure 2.4. image color fusion: (a) + (b) = (c).

1.3. How to alternate image exhibition

Screen 2 has two tables that controls 1x8 pixels group: the pattern table, that controls
the pixels pattern (front or background color), and the color table, that holds the color codes
for the two colors.

The RAM to VRAM data transfer is quite slow for large images to achieve an illusory
effect that we are searching for. In order to achieve a faster image switching, we will use
another table from screen 2: the name table.

The name table relates screen physical 8x8 pixels blocks with both pattern and color
tables 8x8 pixel blocks, formed by the vertically stacking of 1x8 pixels groups. This table
divides vertically the screen into three parts, numbered from 0 to 255 each. The whole
screen data transfer takes 12288 bytes, while name table only takes 768, which means that
it takes 16 times less data transfer.

Let's see the next example. The program will rapidly switch two block of 8x8 pixels
(blocks 0 and 2 from pattern/color tables) through the name table, at the physical location
corresponding to the physical block 4, as seen on figure 2.5.

Figure 2.5. - An example of screen 2 color fusion.

Code in Assembly:

C000 10 ORG &HC000
C000 21 04 18 20 BEGIN: LD HL,&H1804 ; VRAM block 004
C003 AF 30 XOR A ; Pat+color to write: 0
C004 CD 4D 00 40 CALL &H4D ; Send data to VRAM
C007 3E 02 50 LD A,2 ; Pat+color to write: 2
C009 CD 4D 00 60 CALL &H4D ; Send data to VRAM
C00C CD 9C 00 70 CALL &H9C ; Like A$=inkey$
C00F 28 EF 80 JR Z,BEGIN ; If key not pressed, return
C011 C9 90 RET ; Returns to Basic

Code in Basic, which incorporates the code in Assembly above:

10 COLOR 15,1:SCREEN 2
20 OPEN"grp:" AS #1
30 LINE(0,0)(7,7),6,BF
40 LINE(16,0)(23,7),2,BF
50 PRESET(9,0):PRINT#1,"+"
60 PRESET(25,0):PRINT#1,"="
70 DEFUSR=&HC000
80 E=&HC000
90 READ A$:IF A$="M" THEN 130
100 POKE E,VAL("&H"+A$)
110 E=E+1
120 GOTO 90
130 X=USR(0):END
200 DATA 21,04,18,AF,CD,4D,00,3E
210 DATA 02,CD,4D,00,CD,9C,00,28
220 DATA EF,C9,M

In order to make use of name table, the images must be already loaded in the VRAM.
Images? Yes, both images share the pattern/color tables, and the trick is to alternate them
using the name table.

Once both images share the same space on the VRAM, we can only use the half screen
width for each image. One image takes the first half of pattern/color tables, while the other
takes the rest. But, we must also reserve a block to hold the black color used on the screen's
regions not used by the resulting image.

So, we reserved the block 0 to the black color and reduced image width from 128 to 120
to preserve image size balance. Each image has 120 x 192 pixels and takes 120 blocks of
8x8 pixels, as shown in figure 2.6.

Figure 2.6. - Image layout on screen.

The green color represents the image A data, whereas the orange color represents the
image B data.

Once loaded the images data, we will use the name table to set images on the right place
and quickly switch them, as seen on figure 2.7.

(a) image A (a) image B

Figure 2.7. Image positioning and switching.

A simple way to achieve this is to create a map in the RAM with the block positions for
both images A and B in the pattern/color tables. First we copy the image A map data to the
VRAM name table, then we do the same for image B map. Repeat both operations until a
key is pressed, for example. Do not load both maps at once or the image switch will not be
seen.

This article is followed by an Assemlby source code for image switching, the map and
some 120 colors image examples. To run an image in Basic, type:

BLOAD “IMAGE.120”,R

The program changes automatically to screen 2 mode and shows the image. If you press
a key, the program stops and returns to the screen 0.

2- Cost Function – the best 2/4 colors for an 1x8 pixels group

Daniel Vik [1] has used a cost function to convert 24-bit images to the 15 MSX 1
default colors. In this function, the objective is to calculate an error from each pixel color
within an 1x8 pixel group to all possible MSX 1 color pairs. The pair who returns the
shortest error from the 1x8 group being evaluated is then selected to represent the group.

This technique consists in creating a table with all two colors combinations from MSX
colors without repetition, an then compare each group with each pair.

Index Color 1 Color 2

1 1 2

2 1 3

3 1 4

4 1 5

...

104 13 14

105 14 15

Table 2.1 – Color combinations

The Squared Error is used to calculate the error for each group in relation to each color
pair.

SE (r , n)=(R r−Rn)
2
+(G r−Gn)

2
+(Br−Bn)

2

Where:
• r – the color to be tested from the original image.
• n – color 1 or 2 from table.
• R – red color component.
• G – green color component.
• B – blue color component.

After, we apply the Minor Squared Error:

MSE(r , n)=min[SE (r ,1) , SE (r ,2)]

According to that, we assume only the error from one color from the pair which results
in the least error. This prevents the testing pixel from the interference of the other color,
mostly when such color is very different from the testing pixel.

At the end, we add the MSE from all 8 pixels to a given color pair and we get the error
for that pair. The pair who returns the least error is selected to represent the group.

Let's see how it works.

Suppose an 1x8 group which the 1st pixel has the same color of MSX 1 index 7. When
we compare this pixel with the line 4 from the table 2.1, we must calculate the SE from
color 7 to color 1 and from the color 7 to the color 5.

Error 75: 12.100
Error 71: 118.315

After all, we find out that the error from 7 to 5 is less than the error from th 7 to 1. This
means that the cyan color is closer to the blue than the black. So, we assume the error from
7 to 5 as the error for the 1st point. Notice that the error assumed 12 is quite smaller than
the discarded value 118. In that case, we have eliminated a great interference on the overall
error.

Now, we repeat this operation for the remaining 7 points, and still, at the line four. After
that, we get the overall error for the evaluating color par.

MSEtotal=∑
i=1

n

MSEi

Once finished a line, we start another line until we reach the end of the table with color
combinations. The pair who resulted on the least error is then selected to represent the pair.

Until here we only found out the best color pair to represent an 1x8 group. But, the
group still having the original colors. For that, we may use the Euclidean Distance to
calculate each pixel to each color of the selected pair. We assume the color pair who returns
the shortest distance.

d=√(R r−Rn)
2+(Gr−Gn)

2+(Br−Bn)
2

2.1. Adding Error Diffusion to the process

On Jannone, Robsy and Ragozini's [2,3] work it was added the Error Diffusion [4] to
the image conversion, resulting in impressive images to the limited MSX 1 screen 2.

This technique spreads an error to the original image's right-down pixels neighbors,
minimizing the Mach Band Effects [4]. The error is calculated as the difference between
the original color and the new calculated color.

According to the cost function characteristics, we will only get the new color from a
pixel within an 1x8 pixel after processing all the pixels and finding out the best color pair.
So, we can only apply error diffusion after all the process.

Thus, there is a little problem when we spread an error to a neighbor within the group:
after changing the neighbor's color, we are changing the color of a group's member and,
consequently, modifying the previous calculation we made to the whole group.

In order to solve that issue, after spreading an error to a pixel withing the evaluated
group, we have to re-calculate the best color for that 1x8 group. Fortunately, the pixels
located under the group are out of the group and the error spread to them do not affect it.

The pseudo-algorithm is presented next.

// For the group
for i 0 to 7 do←

[c1 c2] cost_function(group)←
quant_error pixel(x+i, y) – best_color(pixel(x+i, y), c1, c2)←
pixel(x+i+1, y) pixel(x+i+1, y) + quant_error * 7/16←

end_for

// For the rest
for i 0 to 7 do←

quant_error pixel(x+i, y) – best_color(pixel(x+i, y), c1, c2)←
pixel(x+i, y) best_color(pixel(x+i, y), c1, c2)←

pixel(x+i1, y) pixel(x+i1, y) + quant_error * 3/16←
pixel(x+i, y) pixel(x+i, y) + quant_error * 5/16←
pixel(x+i+1, y) pixel(x+i+1, y) + quant_error * 1/16←

end_for

Repeating eight times the cost function calculation for each 1x8 group compromises
significantly the algorithm performance. If we ignore the re-calculation for the pixels
within the group, we lie on the classic Error Diffusion algorithm and the result is quite
similar.

Figure 3.1 compares the results from the normal algorithm with the optimized
algorithm. We can notice on figure 3.1 (b) that some lines appears in comparison with
figure 3.1 (a).

(a) (b)

Figure 3.1. Comparison between the original algorithm (a) and the optimized one (b).

Figure 3.2 shows more results obtained from the original algorithm with Error
Diffusion applied on 24-bit images in order to convert them to MSX 1 screen 2 format.

Figure 3.2. Results from the 24-bit images conversion to MSX 1 screen 2.

Credits and References

This article was written by Marcelo Silveira in December 2020.

Date: 12 / 2020
E-mail: flamar98@hotmail.com
Homepage: http://marmsx.msxall.com

References:

[1] – BMPto105, Daniel Vik, 2006. http://vik.cc/dvik-joyrex/download/105Colors.ppt
[2] – MSX Screen Convertor, Rafael Janone. http://msx.jannone.org/conv/
[3] – TMSOPT v.0.1, Eduardo Robsy, Arturo Ragozini and Rafael Janone, 2007.
[4] – Artigo Error Diffusion – Marcelo Silveira. http://marmsx.msxall.com/artigos
[5] – MSX Viewer 5 – Marcelo Silveira. http://marmsx.msxall.com/msxvw/msxvw5

	1- A little trick to increase the number of screen 2 colors
	1.1. How many colors we can generate by mixing the 15 MSX 1 native colors?
	1.2. How to generate images for the screen 2 with 120 colors format?
	1.3. How to alternate image exhibition

	2- Cost Function – the best 2/4 colors for an 1x8 pixels group
	2.1. Adding Error Diffusion to the process

