MSX Article
0 MSX

Memory
Experiments




Summary

This article presents some experiments based on the articles “The MSX Memory”.

1- Introduction

Two experiments are proposed:

Experiment #1: how to copy a program block to RAM page 1.
Experiment #2: creating cartridge ROMs.

2- Experiment #1: how to copy a program block to RAM page 1

The goal of this experiment is to show how to copy a program from page 2 to page 1

and run it, once in Basic mode page 1 is set to ROM.

The next program will copy the yellow block from page 2 to page 1. The program starts
running from the green part (&H9004), which is responsible for copying and running the

yellow part.
Add Assembly Line Label Instruction Commentaries
10 ORG &H9000 ; Initial address of the whole program
9000 |CD C3 00 20 CALL &HC3 ; BIOS CLS routine
9003 |C9 30 RET ; Return
9004 DB A8 40 IN A, (&hA8) ; Read current slots configuretion
9006 |47 50 LD B,A ; Copy to register B
9007 |CB 3F 60 SRL A ; Apply right shift twice
9009 |CB 3F 70 SRL A
900B |BO 80 OR B ; Make slot pg 1 = slot pg 2
900C |D3 A8 90 OUT (&HAS8),A ; Send data to port A8
900E |AF 100 XOR A ; Clear register F
900F |21 FF FF 110 LD HL, &HFFFF
9012 |36 00 120 LD (HL),O0 ; Set sub-slot 0
9014 |21 00 90 130 LD HL,&H9000 ; Source block address
9017 |11 00 40 140 LD DE,&H4000 ; Destiny address
901A |06 04 150 ID B,4 ; Counter
901C |7E 160|LOOP: LD A, (HL) ; Read from memory to A
901D |12 170 LD (DE),A ; Copy to memory A register content
901E |23 180 INC HL ; Decrement source pointer
901F |13 190 INC DE ; Decrement destiny pointer
9020 |10 FA 200 DJNZ LOOP ; B=B-1: If B>0, jump to LOOP
9022 |CD 00 40 210 CALL &H4000 ; Run program copied to page 1
9025 |DB A8 220 IN A, (&HAS8) ; After program end, read port A8
9027 |E6 FO 230 AND &B1111000 ; Mask to make pag 1 = slot 0
9029 |D3 A8 240 OUT (&HAS8),A ; Send data to port A8
902B |C9 250 RET ; Return




The program file starting address must be &H9000 (line 10), while the program
executing address must be &H9004:

BSAVE"expl.bin", &H9000, &H902B, &H9004

The yellow program's function is to clear the screen. This effect can easily noticed by
anyone.
The next table explains the previous code grouped by functions.

Line Label Instruction Detailed commentaries
40 ID A,&B10101000 Set page 1 to RAM.
50 LD B,A
A little trick to find RAM slot and set page 1l:
60 SRL A * A = s1s10000, where sl is the RAM slot
70 SRL A * B =A
o  loxs Ln o
90 OUT (&HAS8),A * A = sls1s100
100 XOR A Clear flag F. This is necessary.
110 LD HL, &FFFF
Forces page 1 sub-slot to be 0.
120 LD (HL),O
130 LD HL,&H9000 Set source pointer.
140 LD DE, &H4000 Set destiny pointer.
150 1D B,4 Set counter, according to the block size.
160|LOOP: |LD A, (HL)
170 LD (DE),A
180 INC HL Copy data from page 2 to page 1.
190 INC DE
200 DJNZ LOOP
210 CALL &H4000 Run the yellow code.
220 IN A, (&HA8)
230 AND &B1111000 After finishing, return page 1 to ROM.
240 OuUT (&HAS8),A
250 RET Return to Basic.

This article is followed by the source and binaries of this program. The source code is
compatible with RSCII assembler. They are:

* expl.asm — source code for Macro Asemblador RSCII.

* expl.txt — source code in text format.

* expl.bin — binary. Run it on Basic environment adding the “,r” option.

* expl.bas — program in Basic including the binaries.

In order to run this experiment in Basic, use the following program:

10 FOR E=&H9000 TO &H902B
20 READ A$

30 A = VAL("&h"+A$)

40 POKE E,A

50 NEXT E

60 DEFUSR=&H9004 : X=USR(O0)




70 DATA CD,C3,00,C9,DB,A8,47,CB,3F,CB,3F,B0,D3,A8,AF,21
80 DATA FF,FF,36,00,21,00,90,11,00,40,06,04,7E,12,23,13
90 DATA 10,FA,CD,00,40,DB,A8,E6,F0,D3,A8,C9

2.1- Testing on blueMSX emulator debugger

The blueMSX emulator brings an excellent tool to inspect the MSX instructions set,
memory and registers while the MSX runs. This is the debugger. The debugger is accessed
through the Tools option, located on the blueMSX top menu. Figure 1 presents the
blueMSX emulator and the debugger tool.

Figure 1. blueMSX emulator and debugger tool.

After opening the debugger, the reader will notice that no data is modified. In order to
inspect the MSX content, the emulator must be paused (middle button in the yellow
rectangle signed on figure 1).

Before using the debugger, we must load the program “exp1.bin” or “exp1l.bas” on the
MSX memory, without running it. Use BLOAD without “,r” (binary) or LOAD (Basic).

The debugger allows the step by step instruction execution, as well as creating
breakpoints, which stop program's execution when such point is reached. We will create a
breakpoints at &H9004, &H9014 and &H9022, where the first one is the green program
starting address. But before that, let's see how to set the debugger.

Preparing the debugger: pause the emulator, then click on the debugger window to
activate it an then press “control + G”. A dialog window is opened, asking for the address
to be shown at “Disassembly” window. Type 9004. To add a breakpoint, click on the left
side if the desired address. A red dot confirms the breakpoint. Click once again to remove
the break point.

Starting the experience: after preparing the debugger, run the program. Click on play
button (right button on yellow rectangle), and then proceed according to the chosen file:

* expl.bin — DEFUSR=&H9004 : X=USR(0)

* expl.bas — RUN



As soon as the program starts, the MSX emulator will stop executing at address
&H9004 (imediatelly before), as seen o figure 2.

| blueMSX - Debugger =|B]| X
File
r B
Disassembly CPU Registers Stack
9003: ret - Flags Z NC PE=- 3+
© so004: in a, (#28) AF 0244 3 EE
9006: 1d b,a BC 00 3 q
9007: srl a DE 0
%009 srl a HL 1
S00B: or b AF' 0
g00C: out (#a8),a BC' ]
S00B: xor a et B 4
S00F: 1d hl, #ff£f 0
9012: 14 (n1),#00 (5] | Callstack 0
® so014: 1d hl, #9000 ABGN;: (Tokl  0BhQ 0
9017: 1d de, #4000 scol; 1d e A 0
301A: 1d b, 404 g0 Al Ao 0
s0ic: 1d a, (n1) $EDY. cadd chisl 0
901D: 1d (de),a 4C70: call  #ddc 0
S01E: jae hl 48BE: call #4ci 3
901F: ine de 48B3: rst 08h 3
2020: djnz  #%01c 5012: rst  08h ]
® co22: call #4000 vl 5427: st  O8hi e
Memory
Memory: [20: 260 - Visible Memory ) AMGU
2
00 el cB 09 18 e5 cd 39 54 44 4d 4B TafoTDM
ed 78 ¢3 cf 4f cd 2f S4 d5 cf 2c ixBtof/7o1, =
cd lc 52 cl c% cd Ob 40 ed 79 c9 f RABIZRiyE =
cd Ob 40 c5 £5 le 00 2b d7 28 05 fr@As  +x(|
cf 2c ed 1c 52 f1 57 €1 cd bd 00 1,1 RAWALn
ed 78 ab a2 28 f7 c9 cd fB fe 2a ix«¢(+Efep*
1c f4 7c a5 3c 28 08 3a bb f6 b7 61¥<(B:xo-
le 15 20 23 ci 01 A4 %a a3 fA 27 L #K drenn =
Paused

Figure 2. Program starting to run on debugger.

Pay attention to the red dot on the left side of address &H9004. There is a yellow arrow
inside it, indicating the next instruction to be run. The “Disassembly” windows shows the
memory address, machine code and mnemonics. Can you see our program there?

In order to change the memory location on “Memory” window, type 4000 in the box
detached in the red rectangle on figure 2. Notice that this area remains as ROM.

It is possible to run each instruction step by step using F11 key and follow any changes
on Z-80 registers. Thus, let's run automatically to the next breakpoint.

The first part of the program will change page 1 from ROM to RAM. To run directly
from &H9004 to &H9014, click on debugger's “play” button (blue rectangle). So, the page
1 is changed as seen on figure 3.

The next part, from &H9014 to &H9022, the program will copy the green code to the
memory region between &H4000 and &H4003. Figure 4 shows it.

At last, run the last part of the program.

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A

003FFB 00 el c8 09 18 e5 cd 39 54 44 4d 003FFB 00 el c8 09 18 ff ff ff ff ff ff

004006 ed 78 c3 cf 4f cd 2f 54 d5 cf 2c 004006 ff ff ff ff ff ff ff ff ff ff ff

004011 cd 1lc 52 cl c9 cd 0b 40 ed 79 c9 004011  ff ff ff ff ff ff ff £f ff ff ff

00401C cd 0b 40 cd £5 le 00 2b d7 28 05 00401Cc  ff ff ff ff ff ff ff £f ff ff ff
a) page 1 in ROM mode b) page 1 in RAM mode

Figure 3. Page 1 slot configuration.



003FFB
004006
004011
00401C

+0
00
ff
ff
ff

+1 +2 +3
el c8 09
ff £ff ff
ff £ff ff
ff £ff ff

+4 +5 +6 +7 +8 +9
18]cd c3 00 c9|ff
ff £f ff £ff ff ff
£f £ff £ff ff ff ff
ff £f ff ff ff ff

Figure 4. Program copied to page 1.

3- Experiment #2: creating cartridge ROMs

As seen on the “The MSX Memory” first article, a cartridge ROM has a 16-byte header
with some important data used by the system to manipulate it. In addition, the ROMs can
be of two types: Assembly, starting at &H4000, and Basic, starting at &H8000.

3.1 - ROM in Basic Adapted from [1]

The first step to create a Basic ROM type is to change the initial address from a
program in Basic, in order to introduce the header just before this program. Also, the first

byte must be 0.

POKE &HF676,&H11

: POKE &HF677,&H80

Notice: run the previous instruction in one line.

The TEXT parameter will point to &H8010 and the program will start at &H8011.

The next step is to create the ROM header.

10
20
30
40
50
60
70
80

After filling the header, just create or load the Basic program which will be added to the
ROM. Even after the instruction NEW, the starting address remains at &H8011.
Create a file, by saving the address from &H8000 to &HBFFF. This is the ROM.

Obs: the saved file in Basic mode will contain a 7-byte header. In order to remove the
MSX file header, use the noheader [2] program or any hexadecimal editor.

AD =
FOR I
POKE
NEXT
POKE
POKE
POKE
POKE

&H8000

= 0 TO 15
AD + I, O

I
&H8000,ASC("A")
&H8001,ASC("B")
&H8008, &H10 }
&H8009, &H80

3.2 - ROM in Assembly

The following program was taken from the MarMSX Development Assembly course

| Modify the

TEXT

[3], and will be used on our Assembly ROM cartridge.

+A
ff
ff
ff
ff

: POKE &H8010,0



Add Assembly Line Label Instruction Commentaries
10 ORG &H4010 ; Program staring address

4010 |CD C6 00 20 CALL &H6C ; Set screen 0 (INITXT)

4013 |11 00 00 30 LD DE,O0 ; VRAM address

4016 |21 21 40 40 LD HL,NOME ; Phrase initial address

4019 |01 oA 00 50 LD BC,10 ; String size

401C |CD 5C 00 60 CALL &H5C ; Call print on screen rountine

401F |18 FE 70|AQUI: JR AQUI ; Halt

4021 |4F 20 4D 53 80|NOME: DEFM “O MSX vive” ; Phrase

- 58 20 76 69
402A |76 65

The INITXT (line 20) is necessary to change the screen mode after the MSX boot.

Any tool can be used to generate the binary code from the Assembly code. Thus, it is
necessary to reserve 16 bytes to the header. This header must contain the “AB” (values
&H41 and &H42) plus the program stating address at &H4010 on the two following bytes.

The program must be placed after the header. Create a file size of 16 KB.
The file “omsxvive.rom” initial data is then:

0000 41 42 10 40 00 00 00 00 00 00 00 00 00 00 00 00 | AB.@.....couvunn.
0010 CD 6C 00 11 00 00 21 21 40 01 OA 00 CD 5C 00 18 | .l....!t!@....\..
0020 FE 4F 20 4D 53 58 20 76 69 76 65 FF FF FF FF FF | .0 MSX vive.....

4- Credits and references

This article was originally written in portuguese and translated into English by Marcelo

Silveira.

Written in: May, 2004.
Revised in: July, 2017.
E-mail: flamar98@hotmail.com

Homepage: http://marmsx.msxall.com

References:

[1] - MSX 2 Technical Handbook, ASCII Corporation, 1987.
[2] - Noheader, Tools, MarMSX Development em http://marmsx.msxall.com

[3] - Curso de Assembly, Tools, MarMSX Development em http://marmsx.msxall.com




